딥러닝의 정석
선형대수학과 확률로 시작하는 딥러닝의 정석 실전에서의 구현을 위한 파이토치 기반 소스 코드 제공 『딥러닝의 정석 (2판)』은 딥러닝의 기본과 본질에 집중하여 독자들이 폭넓은 이론과 실무 지식을 습득할 수 있도록 구성되어 있다. 초반에는 딥러닝 이해에 필요한 수학적 배경지식인 선형대수학과 확률을 살펴보고, 신경망의 기본 원리와 함께 순방향 신경망의 구조, 순방향 신경망을 PyTorch 실습 코드로 구현하는 방법, 실제 데이터셋에서 순방향 신경망을 훈련하고 평가하는 방법 등을 상세하게 다룬다. 또한 경사하강법, 최적화, 합성곱 신경망, 이미지 처리, 변이형 오토인코더 등 실전에서의 딥러닝 구현 능력을 향상할 수 있도록 도와주고, 딥러닝의 특정 응용 분야와 신경망 아키텍처를 깊이 이해하는 데 집중한다. 후반부에는 시퀀스 분석 모델, 생성 모델, 그리고 해석 가능성 방법론 등에 대한 이론과 실무 지식을 제공해 최신 동향을 반영하여 각 분야에 딥러닝을 어떻게 적용하는지 설명한다. 이 책은 딥러닝의 기본부터 심화 내용까지 아우르며, ‘정석’이라는 이름에 걸맞게 한 권으로 딥러닝 기술을 마스터할 수 있는 완벽한 가이드이다.